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ABSTRACT

Optimization of the dynamic performance of air-
packaged micromachined devices requires accurate
estimation of viscous drag forces, but such simulations
can be prohibitively time-consuming if the finite element
method (FEM) or the finite difference method (FDM) is
used. The recently developed precorrected-FFT
accelerated boundary element method (BEM) solver
FastStokes has made substantial changes to this situation.
To further determine the accuracy of the FastStokes
solver, the simulation results of the ADXL76
accelerometer and a micro-mirror are discussed in this
paper. Close matches between simulation results and
testing results prove the efficiency and broad
applicability of this fast Stokes flow solver.

Keywords: Stokes flow, BEM, fluid, MEMS,
simulation.

INTRODUCTION

Calculating the viscous drag forces on geometrically
complicated micro-machined devices is a challenging
job. Semi-analytical approaches have the advantage of
being simple and easy to implement [1, 2], but such
approaches are only good for certain geometries and
require deep understanding of the assumptions used for
the simplifications. For these reasons semi-analytical
approaches usually fail to achieve good accuracy in
general cases. The well-known FEM based or FDM
based commercial Navier-Stokes equation solvers are
fast enough for simple geometries, but the cost becomes
prohibitively high for complicated geometries. To solve
this problem, we have developed a Precorrected-FFT
accelerated boundary element method based Stokes flow
solver.  When applied to analyzing lateral motion in
structures as complicated as a full comb drive (See
Figure-1), the FastStokes program was able to compute
accurate drag forces, as verified by comparisons with
experiment, in under 20 minutes on a workstation[3,4,5].

A general question that arises is how reliable and how
accurate is the FastStokes solver. To answer this
question, this paper briefly summarizes the critical
aspects of the major algorithms used in the FastStokes
program. The rest part of this paper focus on the
simulations of ADXL76 accelerometer and a
micromirror, and compares the results to measured data.

FASTSTOKES SOLVER

The FastStokes programs solves the steady-state
incompressible Stokes equation. Given the isothermal
condition, continuity assumption, and low Reynolds
number assumption, which are usually good for air-
packaged MEMS devices, the steady incompressible
Stokes equation is derived from isothermal
incompressible Navier-Stokes equation by neglecting the
nonlinear convective term :
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Here u  is the velocity of the fluid, µ  is the viscosity

and P  is the pressure. The corresponding single layer
velocity integral equation is
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jf  is the surface force distribution, ijG  is the velocity

kernel. In the case when the device feature size gets very
small or the device is packaged in vaccum, the continuity
assumption may not be applicable. But, for general air-
packaged oscillating devices where damping is
nonnegligible, the above assumptions usually work well.

Based on the Precorrected-FFT accelerated boundary
element method, the FastStokes solver is much faster
than traditional volume discretization based 3-D solvers.
The surface discretization used by FastStokes generates
fewer unknowns than the volume discretization used by
the FDM or the FEM. The Precorrected-FFT algorithm,
together with the well-known Krylov subspace iterative
solver GMRES, forms the backbone of FastStokes. The
GMRES algorithm reduces the cost of solving the BEM-
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generated linear system from O(n3) to O(n2). The
Precorrected-FFT algorithm uses projection on to a
uniform grid plus the FFT to handle far field interactions,
and reduce the computational cost of the matrix vector
multiplication step of GMRES to O(nlog(n)). The final
computation cost of FastStokes is only O(nlog(n))
comparing with the expensive O(n3) of traditional direct
BEM solvers. FastStokes is not only fast, but also
accurate. An important feature of FastStokes is the
analytical kernel integration algorithm [6], which
guarantees the accuracy of the direct kernel integration
and dramatically reduces global error. During the
development of FastStokes solver, it was also found that
the discretized form of the Stokes BEM integral operator
is indeed a singular matrix due to the pressure derivative
term in the Stokes equation. An efficient modification of
the GMRES algorithm has been made and a pressure
pinning method has been introduced to efficiently solve
this singular BEM operator problem [7].

A SPHERE EXAMPLE

For the simple sphere geometry, an analytical solution of
the Stokes equation exists. Given the radius of the

sphere, 0R , and constant velocity U , the drag force on

the sphere is given by:

URF 06πµ= (3)

For our computational experiment, we assumed

1,1,1 0 === xURµ  and used FastStokes to

calculate the X-direction drag force. Note the error is
mostly due to geometry error of using a flat-panel
discretization, see Figure-2. The CPU time for using
FastStokes and traditional Gaussian Elimination is
compared in Figure-3. If large numbers of panels are
used in the discretization, the FastStokes solver is several
orders of magnitude faster than Gaussian Elimination. A
500-Mhz dual-processor computer running Alpha-Linux
system was used for the simulation.

A MACRO MODEL

Decoupled problems are usually much easier to simulate
than coupled domain problems. The rigid body
assumption has been used extensively in MEMS
modeling to simplify problems, especially for large proof
masses supported on thin tethers. For example,
mechanical structure, fluid, and electrostatic problems
must be considered in modeling an electrostatically
actuated air-packaged micro-mirror. The mirror, which is
usually thick to avoid having a large curvature, is stiff
enough to be modeled as a rigid body. The deformation
of the mirror is negligibly small even when large load is

applied. A second order spring-mass-damper system is a
good macro model for the device and the decoupled
problems can be solved separately.

staticelectrokbJ −Γ=++ θθθ (4)

Where J  is the moment of inertia, b is the damping

coefficient, k  is the stiffness and staticelectro−Γ  is the

electro-static torque. The quality factor of the system is
given by

b

Jk
Q = (5)

The next critical step is to accurately calculate the
coefficients using full 3-D device level simulation
programs. The macro model of the device can be further
plugged into system level simulators to test the
performance of the whole system.

ADXL76

A picture of ADXL76 accelerometer is shown in Figure-
4. The device is fabricated by Micromachined Product
Division of Analog Devices using iMEMS process. Some
basic dimensions are listed in the following table.

ADXL 76
Finger overlap 104 um
Air gap between finger 1.3 um
Air gap between substrate 1.6 um
Number of cells 28

It is very clear that the aspect ratio of air gaps between
fingers are large enough to generate strong viscous
damping forces. This is indeed the dominate source of
damping. The substrate is also very close to the finger
and proof mass, and the shear damping forces between
the substrate and beam (movable comb) should not be
neglected. In such cases, a simple model based on semi-
analytical approach will not yield accurate results.
However, full 3-D simulation of entire device is very
difficult even for a fast solver like FastStokes. Those
very close fingers cannot be accurately simulated without
using a very fine discretization, and this generates large
numbers of unknowns. To solve this problem efficiently
and to figure out a good method for modeling even more
complicated accelerometers, cells instead of the whole
devices are simulated (see Figure-5). Simulation results
show that the damping forces increase linearly with the
number of cells (Figure-6). An extrapolation yields a
quality factor of 6.46, which is very close to the tested
mechanical damping of the devices.

An even more exciting part of ADXL76 simulation is the
simulation of Q-factor drifts due to geometry variations
such as beam curvature and positional offsets. Testing a
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single device or a batch of wafers doesn’t yield much 
useful results since curvature and offsets are usually 
coupled. But the simulation results clearly indicate the 
percentage of damping changes due to geometry 
variations.  

MICRO-MIRROR

As a critical part of the all-optical network, the MEMS 
micro-mirror must satisfy very high performance 
requirements. Damping is important for designing a  
mechanically stable system, but too much damping will 
negatively affect the performance of the micro-mirror. 
Both simulation and testing results of two mirror designs 
are given in this paper. The mirror is electrostatically 
actuated, four tethers support the mirror and a gimbal. 
Two important modes of the mirror are the “mirror 
rotation” motion and “mirror+gimbal rotation” motion. 
The device is packaged in air. 

The Z-direction surface force of a simulation result is 
shown in Figure-7. Both mirror and gimbal  rotate about 
X-axis, Only half of the structure is shown to give a clear 
view of force distribution. Figure-8 shows the 
convergence of the simulation as discretization is refined.    

A Polytec Scanning Vibrometer was used to excite and 
measure two rotation modes of the mirror, and the 
damping was calculated from the decaying oscillation 
curves of the step response.  Table 1 compares the 
simulated and measured Q, the two match within 10%.  

SUMMARY 

This paper compares simulation results with testing 
results to show the accuracy and efficiency of the 
FastStokes simulation program. Based on Precorrected-
FFT accelected boundary element method,  the 
FastStokes simulation porgram makes fast full 3-D fluid 
simulation of micromachined devices possible.  

The authors would like to thank Rick Lueth for his 
testing data. This work was supported by the DARPA 
microfluidics program, the National Science  Foundation 
and Analog Devices Inc.  
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Figure-1 X-direction drag force distribution (Pa) on 
a lateral resonator 
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Figure-2 Relative error of sphere vs the number of panels 
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Figure-3 CPU time of FastStokes and Gaussian
Elimination

Figure-4 ADXL76 accelerometer

Figure-5  4 cells used in ADXL76 simulation
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Figure-6 Drag forces on cells and linear data fitting

Figure-7 Z-direction drag force on a micro-mirror
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Figure-8 Convergence of micro-mirror simulation

Table-1 Quality factors--Simulations and measurements
QMode

Simulated Measured 
Error
(%) 

Mirror+Gimbal 2.36 2.31 2.16Mirror
1 Mirror 3.14 3.45 8.99

Mirror+Gimbal 4.69 4.27 9.84Mirror
2 Mirror 10.16 10.63 4.42

Rotate
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